
Level K
146 Magazine Street,
Apt. 2
Cambridge, MA 02139
www.levelk.io

Prepared by
Chris Whinfrey
Paul Cowgill
Shane Fontaine

 audits@levelk.io

Version
1.1

Date
October 21st, 2018

Open Zeppelin v2.0
Security Audit

Introduction

The Zeppelin team asked us to review and audit all of the smart contracts
contained in their widely used OpenZeppelin library in order to prepare it
for the OpenZeppelin v2.0 release.

The audited code is located in the OpenZeppelin/openzeppelin-solidity
repository. The version used for this report is commit
dac5bccf803696d9d98d269b8c27c7aac5fa1c5c.

The Zeppelin team did a great job of being consistent with their style, even
though there are over 150 contributors to the repository. This consistency
of the contracts combined with the well-written code allowed us to focus
on the critical pieces of the codebase during the audit. We commend the
team for their ability to write modular code while keeping it both simple and
usable. We are very pleased with the team’s communication with us
throughout the entire process, as it allowed for a more continuous audit
flow and quick clarification whenever it was needed.

We found one critical issue in BreakInvariantBounty.sol that
was susceptible to frontrunning by a malicious party that may lead to a
loss of funds. After independently coming up with the issue, we worked
with the team and an existing PR to take the best course of action
given the situation. The Zeppelin team removed the contract until a
better solution has been found. Our goal with this audit was
twofold: remove any vulnerabilities that may be found in the existing
framework and help future developers easily deploy these contracts as
they are intended to be used. Our suggestions that follow range from
gas optimizations and comment clarifications to recommended fixes of
potentially exploitable code.

Update: The Zeppelin team has followed most of our
recommendations and updated their contracts appropriately.

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 2

https://openzeppelin.org/
https://github.com/OpenZeppelin/openzeppelin-solidity

Issues Overview
Open Zeppelin v2.0

Number of Issues per severity level

Open 3 0 0 0

Closed 16 4 2 1

Issues by severity level

Directory Issue Title Status Severity

drafts Avoid frontrunning by a malicious actor or
the contract owner

Resolved

crowdsale Stop crowdsale manipulation via
reentrancy by adding the nonReentrant
modifier to the buyTokens() function

Resolved

token Allow for safe changes to allowances
through the SafeERC20 interface

Resolved

crowdsale Require closingTime to be strictly greater
than openingTime

Resolved

crowdsale Return the true value of remainingTokens() Resolved

crowdsale Prevent reentrancy in finalize() Resolved

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 3

token Make _clearApproval() private Resolved

access Role contracts emit events when a role has
already been assigned or unassigned

Resolved

crowdsale Use the internal keyword to force correct
contract usage

Resolved

crowdsale Mark validation functions as view to ensure
they don’t change state

Resolved

crowdsale Require initialRate is strictly greater than
finalRate

Resolved

crowdsale Consider overriding the rate() function to
avoid any confusion

Resolved

drafts Checks-Effects-Interactions Resolved

drafts Consider being more explicit upon contract
creation to force correct usage of the
contract

Resolved

drafts Consider being explicit about the number
of tokens that are meant to exist within the
contract

Resolved

introspection _supportedInterfaces should be private Resolved

math Additional test cases are needed for
SafeMath to have full coverage

Resolved

ownership Allow subclasses to renounce ownership Open

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 4

ownership Secondary’s constructor should be internal
because it is meant to be extended

Resolved

payment Explicitly prevent adding payees late Resolved

payment PullPayment‘s constructor should be
internal because it is meant to be
extended.

Resolved

token Cast 0 to an address type on lines 169 and
182

Open

token Expose an internal _transfer() function Resolved

token Unused function _burn() Resolved

token ERC20Capped should override _mint()
instead of mint()

Resolved

utils Consider changing the name of
isContract()

Open

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 5

Issues
Open Zeppelin v2.0

access/

1. Role contracts emit events when a role has already

been assigned or unassigned

Roles.sol#L16-L27​ ​- In Roles.sol, preventing add() from adding

already assigned roles and preventing remove() from removing

unassigned roles will keep the role contracts from emitting false

events such as CapperAdded when the role was already

assigned to the added address.

Update: resolved in​ ​#1421

Notes:

● CapperRole.sol#L15​ - Emit a ​CapperAdded ​ event in the

CapperRole ​ constructor so that the contract’s set of

cappers can be determined from the contract’s events. This

recommendation applies to ​MinterRole ​, ​PauserRole ​,

and ​SignerRole ​ as well.

Update: resolved in ​#1329

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 6

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/access/Roles.sol#L16-L27
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1421
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1421
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.0.0-rc.2/contracts/access/roles/CapperRole.sol#L15
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1329

crowdsale/

Crowdsale.sol

1. Stop crowdsale manipulation via reentrancy by

adding the nonReentrant modifier to the buyTokens()

function

The Crowdsale contract is at risk for reentrancy if a call to an

unknown address is made during the execution of the

buyTokens() ​ function. One way this could happen is if the

ERC20 token executes code at the receiver’s address when it is

transferred. An example of this class of token is described by the

ERC677​ standard, an extension of ERC20. Reentrancy would

allow a malicious actor to bypass protections such as

IndividuallyCappedCrowdsale ​’s purchase cap. Consider

adding the ​nonReentrant ​ modifier to the ​buyTokens()

function to ensure this attack is not possible.

Update: resolved in​ ​#1438

2. Use the internal keyword to force correct contract

usage

Because all of the crowdsale contracts are meant to be

extended, consider making every crowdsale contract’s

constructor ​internal ​.

Update: resolved in​ ​#1439

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 7

https://github.com/ethereum/EIPs/issues/677
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1438
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1438
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1439
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1439

3. Mark validation functions as view to ensure they

don’t change state

Consider using the view keyword on both

_preValidatePurchase ​ and ​_postValidatePurchase ​.

All state changes should be made in

_updatePurchasingState ​, so enforcing view for the

validation functions ensures that state changes are implemented

where they should be.

Update: resolved in​ ​#1439

Notes:

● Comment:​ ​Crowdsale.sol#L78​ - Crowdsale’s fallback

function can be used to purchase tokens but requires more

than 2300 gas. Any tokens purchased via ​transfer()

from another contract will fail due to the imposed gas limit.

One case where this might be implemented is a contract that

pools funds to make a group purchase with a single

transaction. A comment advising users to use the

buyTokens() ​ function when purchasing from another

contract will help avoid unexpected transaction failures.

Update: resolved in ​#1446

● Typo:​ ​Crowdsale.sol#L104​ - the mount -> the amount

Update: resolved in ​#1446

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 8

https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1439
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1439
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/crowdsale/Crowdsale.sol#L78
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1446
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/crowdsale/Crowdsale.sol#L104
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1446

● Grammar:​ The NatSpec comment for ​buyTokens ​ says

@param beneficiary Address performing the

token purchase ​, but the beneficiary doesn’t necessarily

perform the buyTokens transaction. The ​msg.sender

“performs” it. Consider rewording the comment to say that

the beneficiary is the address that will be receiving the

purchased ERC20 tokens.

Update: resolved in ​#1446

● Grammar:​ ​Not necessarily emits/sends ​ -> ​Does

not necessarily emit/send

Update: resolved in ​#1446

crowdsale/validation/

TimedCrowdsale.sol

1. Require closingTime to be strictly greater than

openingTime

TimedCrowdsale.sol#L33​ - ​closingTime ​ should be strictly

greater than ​openingTime ​. If opening time and closing time are

equal, ​IncreasingPriceCrowdsale ​’s ​getCurrentRate()

will always revert ​due to division by 0​.

Update: resolved in​ ​#1440

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 9

https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1446
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1446
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/crowdsale/validation/TimedCrowdsale.sol#L33
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/crowdsale/price/IncreasingPriceCrowdsale.sol#L53-L55
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1440
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1440

crowdsale/price/

IncreasingPriceCrowdsale.sol

1. Require initialRate is strictly greater than finalRate

IncreasingPriceCrowdsale.sol#L26​ - ​Make ​initialRate ​ strictly

greater than ​finalRate ​ (that is, the price should increase by

some amount or ​TimedCrowdsale ​ could be used instead).

Update: resolved in​ ​#1441

2. Consider overriding the rate() function to avoid any

confusion

IncreasingPriceCrowdsale.sol#L50​ - ​The ​rate() ​ function will

return the static rate that is passed into ​Crowdsale ​’s constructor

and is never used. This will differ from what is returned from

getCurrentRate() ​. Consider overriding ​rate() ​ to revert in

IncreasingPriceCrowdsale ​.

Update: resolved in ​#1441

Notes:

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 10

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/crowdsale/price/IncreasingPriceCrowdsale.sol#L26
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1441
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1441
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/crowdsale/price/IncreasingPriceCrowdsale.sol#L50
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1441

● IncreasingPriceCrowdsale.sol#L50​ - We believe

getCurrentRate() ​ should return ​0 ​ when called outside of

the crowdsale time period. The current implementation will

throw in some cases or return a nonzero rate in others.

Ideally the function should return early like this:​ ​if

(!isOpen()) { return 0 }

Update: resolved in ​#1442

crowdsale/emission/

AllowanceCrowdsale.sol

1. Return the true value of remainingTokens()

AllowanceCrowdsale.sol#L40​ - ​remainingTokens() ​ may return

more tokens than the ​_tokenWallet ​ address contains. It should

return the minimum (using ​Math.min ​) of the ​_tokenWallet ​’s

balance ​ and the ​allowance ​.

Update: resolved in​ ​#1449

crowdsale/distribution/

RefundableCrowdsale.sol

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 11

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/crowdsale/price/IncreasingPriceCrowdsale.sol#L50
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1442
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/crowdsale/emission/AllowanceCrowdsale.sol#L40
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1449
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1449

Notes:

● Note:​ ​RefundableCrowdsale.sol#L44​ - For ​claimRefund ​,

beneficiary ​ is a loaded word that implies the intended

beneficiary from the escrow’s perspective. This is because

Escrow ​ has a ​beneficiaryWithdraw ​ function and it isn’t

the same ​beneficiary ​ that is meant here. Consider

calling the parameter ​refundee ​ in the ​claimRefund

function of this contract.

crowdsale/distribution/

PostDeliveryCrowdsale.sol

Notes:

● Note:​ ​PostDeliveryCrowdsale.sol#L4​ - Consider removing

the ​IERC20 ​ import, as it is never used.

Update: resolved in ​#1437

crowdsale/distribution/

FinalizableCrowdsale.sol

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 12

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/crowdsale/distribution/RefundableCrowdsale.sol#L44
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/crowdsale/distribution/PostDeliveryCrowdsale.sol#L4
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1437

1. Prevent reentrancy in finalize()

FinalizableCrowdsale.sol#L37​ - We recommend setting

_finalized ​ to true before calling ​_finalization() ​. If

_finalization() ​ is overridden to make a call to an unknown

address, a malicious actor could reenter ​finalize() ​. One case

where this may happen is if the caller of ​finalize() ​ is rewarded

with a small ETH payment.

Update: resolved in​ ​#1447

Notes:

● Note:​ ​FinalizableCrowdsale.sol#L15​ - We recommend

removing the right-hand operand of ​_finalized ​ in order to

save gas on deployment.

Update: resolved in ​#1403

drafts/

BreakInvariantBounty.sol

1. Avoid frontrunning by a malicious actor or the

contract owner

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 13

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/crowdsale/distribution/FinalizableCrowdsale.sol#L37
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1447
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1447
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/crowdsale/distribution/FinalizableCrowdsale.sol#L15
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1403

BreakInvariantBounty.sol#L49​ - Claims can be frontrun by both a

malicious third-party and the contract owner. A malicious

third-party can frontrun the claim by repeating the researcher’s

transactions that deploy the target, break the invariant, and make

the claim with higher gas prices. The contract owner can frontrun

a claim with a call to ​destroy() ​, revoking the bounty before the

researcher can be rewarded while the researcher already revealed

the broken invariant.

Update: resolved in​ ​#1424​. This contract will be removed while

new approaches are considered.

2. Checks-Effects-Interactions

BreakInvariantBounty.sol#L55​: ​_claimed ​ should be moved

above ​_asyncTransfer(researcher,

address(this).balance); ​ in order to comply with the

“check-effects-interaction” rule.

Update: resolved in​ ​#1424​. This contract will be removed while

new approaches are considered.

drafts/

SignatureBouncer.sol

Notes:

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 14

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/drafts/BreakInvariantBounty.sol#L49
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1424
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1424
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/drafts/BreakInvariantBounty.sol#L55
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1424
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1424

● Comment:​ ​SignatureBouncer.sol​ - Add a comment warning

that users are responsible for preventing replay attacks when

inheriting from this contract.

Update: resolved in ​#1434

drafts/

TokenVesting.sol

1. Consider being more explicit upon contract

creation to force correct usage of the contract

TokenVesting.sol#L45​ - Consider adding

require(start.add(duration) > now); ​ and

require(duration > 0); ​ to the constructor. As it stands, if

either were to return false, the contract would allow the beneficiary

to claim all tokens immediately, which is likely not desired (this can

be achieved with a simple transaction). Adding this check adds an

additional sanity check to confirm that the contract executes as

expected.

Update: resolved in​ ​#1431

2. Consider being explicit about the number of tokens

that are meant to exist within the contract

TokenVesting.sol#L162​ - ​vestedAmount() ​ returns a different

amount if tokens are added to the contract. The beneficiary could

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 15

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/drafts/SignatureBouncer.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1434
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/drafts/TokenVesting.sol#L45
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1431
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1431
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.0.0-rc.2/contracts/drafts/TokenVesting.sol#L162

withdraw their currently vested tokens and send them back to the

contract in order to increase the amount returned by

vestedAmount() ​. Changing the function to

vestedPercentage() ​ and using that to calculate

releasableAmount() ​ will prevent unexpected manipulation of

the amount returned by ​vestedAmount() ​.

Update: resolved in​ ​#1427

Notes:

● Note: ​TokenVesting.sol#L20-L21​ - Since the contract can

accept and pay out multiple types of tokens, we recommend

adding a variable ​tokenAddress ​ to both the ​Released()

and ​Revoked() ​ events.

Update: resolved in ​#1431

● Note: ​TokenVesting.sol#L163​: We recommend adding an

address ​ typecast to ​this ​.

examples/

Notes:

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 16

https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1427
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1427
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/drafts/TokenVesting.sol#L20-L21
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1431
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/drafts/TokenVesting.sol#L163

● Note: ​Both ​SampleCrowdsaleToken​ and ​SimpleToken

declare state variables for ​name ​, ​symbol ​, and ​decimals ​.

We recommend inheriting from ​ERC20Detailed ​ instead to

demonstrate its usage.

Update: resolved in ​#1448

● Comment: ​SampleCrowdsale.sol#L28​ - ​MintedCrowdsale

is not listed as an extension in the comment.

Update: resolved in ​#1448

introspection/

1. _supportedInterfaces should be private

ERC165.sol#L22​ - ​_supportedInterfaces ​ can be ​private

for increased encapsulation.

Update: resolved in​ ​#1379

Notes:

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 17

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/examples/SampleCrowdsale.sol#L14
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/examples/SimpleToken.sol#L13
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1448
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/examples/SampleCrowdsale.sol#L28
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1448
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/introspection/ERC165.sol#L22
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1379
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1379

● Typo:​ ​ERC165.sol#L46​ - ​_registerInterface ​ comment

says ​@dev private method ​ but it’s ​internal ​. The

comment should be changed to say ​internal ​.

Update: resolved in​ ​#1422

● Style:​ ​ERC165Checker.sol#L44-L81​ -

supportsInterfaces() ​ as a name is very similar to

supportsInterface() ​ which may be error prone.

Consider renaming the function to something slightly more

verbose but easily distinguishable, like

supportsManyInterfaces ​.

Update: resolved in​ ​#1435

● Style:​ ​ERC165Checker.sol#L94-L147​ - Adding underscores

to ​ERC165Checker ​‘s private functions and changing

supportsERC165Interface() ​ to

_supportsInterface() ​ will help differentiate the

functions and their usages.

Update: resolved in​ ​#1435

lifecycle/

Pausable.sol

Notes:

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 18

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/introspection/ERC165.sol#L46
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1422
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1422
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/introspection/ERC165Checker.sol#L44-L81
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1435
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1435
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/introspection/ERC165Checker.sol#L94-L147
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1435
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1435

● Note:​ ​Pausable.sol#L11-L12​ - In ​Paused ​ and ​Unpaused

events, consider including the pauser’s address in the event

since there can be multiple pausers.

Update: resolved in​ ​#1410

● Note:​ ​Subclasses of Pausable currently have no access to

the ​_paused ​ state variable. Adding internal functions for

_pause ​ and ​_unpause ​ would allow for subclasses that

provide additional functionality. (e.g. a contract that allows

for unpausing by any address after a time period has

expired)

math/

Math.sol

Notes:

● Comment:​ Consider adding NatSpec comments to each

function in ​Math.sol ​ for consistency and clarity.

Update: resolved in​ ​#1423

math/

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 19

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/lifecycle/Pausable.sol#L11-L12
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1410
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1410
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1423
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1423

SafeMath.sol

1. Additional test cases are needed for SafeMath to

have full coverage

The following test cases are needed for SafeMath to have full

coverage:

● div ​ with numbers that aren’t divisible evenly

● div ​ with the first argument being 0

● mul ​ with the second argument being 0

Update: Tracked in issue ​#1386

ownership/

Ownable.sol

1. Allow subclasses to renounce ownership

Subclasses of ​Ownable ​ are able to transfer ownership but are not

able to set ​_owner ​ to a 0 address like ​renounceOwnership

does. Consider exposing an internal function to allow ​Ownable

subclasses to remove the owner.

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 20

https://github.com/OpenZeppelin/openzeppelin-solidity/issues/1386

Notes:

● API:​ The ERC20 and ERC721 standards require a

Transfer ​ event be emitted when tokens are created or

destroyed. Consider following this pattern with ​Ownable ​ and

emitting an ​OwnershipTransferred ​ event from the 0

address when ​_owner ​ is set in the constructor and to the 0

address in ​renounceOwnership ​. This allows off-chain

applications to recreate the ownership state from the events.

Update: resolved in​ ​#1397

ownership/

Secondary.sol

1. Secondary’s constructor should be internal

because it is meant to be extended

Update: resolved in​ ​#1433

Notes:

● Comments: ​Consider adding NatSpec comments to the

primary() ​ and ​transferPrimary() ​ functions.

Update: resolved in​ ​#1425

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 21

https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1397
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1397
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1433
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1433
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1425
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1425

● API:​ ​transferPrimary() ​ in ​Secondary.sol ​ should

emit an event.

Update: resolved in​ ​#1425

payment/

RefundEscrow.sol

Notes:

● Note:​ ​RefundEscrow.sol#L13​ - ​RefundEscrow ​ is already

Secondary ​ via ​ConditionalEscrow ​. Remove the

redundant inheritance of ​Secondary ​.

Update: resolved in​ ​#1381

● Style:​ We recommend replacing all ​_state ​ checks such as

require(_state == State.Active); ​ with a modifier.

(e.g. ​isState(State.Active) ​)

● Style:​ ​RefundEscrow.sol#L16​ - ​Closed ​ is the name of both

a state and an event. Consider renaming the event to

RefundClosed ​ to avoid confusion later on in the code.

Update: resolved in​ ​#1418

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 22

https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1425
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1425
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/payment/RefundEscrow.sol#L13
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1381
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1381
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.0.0-rc.2/contracts/payment/RefundEscrow.sol#L16
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1418
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1418

payment/

Escrow.sol

Notes:

● Word choice:​ ​​Escrow.sol#L9​ - Use more common English

word choice: “destinated to” -> “sent to”

Update: resolved in​ ​#1430

payment/

SplitPayment.sol

1. Explicitly prevent adding payees late

SplitPayment.sol#L101​ - Adding payees after payments have

been released is not supported by the current code. Consider

making this function private or requiring that ​_totalReleased ​ is

0. If the second option is chosen, adding payees after funds have

been received but not released will dilute existing payees which

may or may not be the desired behavior.

Update: resolved in​ ​#1417

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 23

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/payment/Escrow.sol#L9
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1430
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1430
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/payment/SplitPayment.sol#L101
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1417
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1417

Notes:

● Naming:​ We recommend being more clear about the desired

functionality of ​SplitPayment.sol ​. An unknowing user

may not realize that funds can be added throughout the

lifetime of the contract. Consider changing the name of the

contract to ​SplitPayments.sol ​.

Update: resolved in​ ​#1417

● Note:​ Adding ​PayeeAdded ​, ​PaymentReceived ​, and

PaymentReleased ​ events will log interactions with this

contract.

Update: resolved in​ ​#1417

payment/

PullPayment.sol

1. PullPayment‘s constructor should be internal

because it is meant to be extended.

Update: resolved in​ ​#1433

token/ERC20/

ERC20.sol

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 24

https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1418
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1417
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1418
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1417
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1433
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1433

1. Cast 0 to an address type on lines ​169​ and ​182

2. Expose an internal _transfer() function

Exposing an internal ​_transfer() ​ function may be useful when

subclassing ERC20 for use cases such as security tokens where a

central operator may need to reverse a transfer or recover frozen

shares. Additionally, an internal function such as

_clearAllowance() ​ may be useful when a transaction

requires a certain amount of token be approved for transfer but, in

some cases, transfers none or a fraction of the approved amount.

Update: An internal _transfer() function was added in ​#1370

token/ERC20/

ERC20Burnable.sol

1. Unused function _burn()

ERC20Burnable.sol#L33​ - The ​_burn() ​ function is not changed

by the override in ​ERC20Burnable ​ and is no longer emitting an

event. Consider removing this function override.

Update: resolved in ​#1373

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 25

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/token/ERC20/ERC20.sol#L169
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/token/ERC20/ERC20.sol#L182
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1370
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.0.0-rc.2/contracts/token/ERC20/ERC20Burnable.sol#L33
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1373

token/ERC20/

ERC20Capped.sol

1. ERC20Capped should override _mint() instead of

mint()

Now that the base ERC20 contract implements ​_mint() ​,

ERC20Capped ​ can inherit directly from the base ERC20 contract

and override ​_mint() ​ instead of ​mint() ​. This will ensure the

cap is not exceeded even when tokens are minted through

functions other than ​mint() ​.

Update: resolved in ​#1443

token/ERC20/

SafeERC20.sol

1. Allow for safe changes to allowances through the

SafeERC20 interface

SafeERC20 ​’s ​safeApprove ​ is still susceptible to this ​attack​ and

may be misleading. Reverting when the allowance is not being set

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 26

https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1443
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit

to or from 0 will help protect users from this vulnerability.

Additionally, adding ​safeIncreaseAllowance ​ and

safeDecreaseAllowance ​ functions will allow users to still

safely adjust allowances when they are not setting the allowance

to or from 0.

Update: resolved in ​#1407

Notes:

● Note:​ ​SafeERC20.sol#L3​ - Importing ​ERC20.sol ​ is

unnecessary.

Update: resolved in​ ​#1437

token/ERC721/

ERC721.sol

1. Make _clearApproval() private

Subclasses that call ​_clearApproval() ​ without emitting an

Approval ​ event will not be ERC721 compliant. Consider making

this function ​private ​ or emitting an ​Approval ​ event in

_clearApproval() ​.

Update: resolved in ​#1450

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 27

https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1407
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/token/ERC20/SafeERC20.sol#L3
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1418
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1437
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1450

Notes:

● Note:​ ​_checkAndCallSafeTransfer ​ does not call any

transfer-related functions as its name implies (although it is

used by one). Consider renaming the function to

_checkOnERC721Received ​.

Update: resolved in​ ​#1445

token/ERC721/

ERC721Burnable.sol

Notes:

● Note:​ ​ERC721Burnable.sol#L7​ - ​burn() ​ is missing a

NatSpec comment.

token/ERC721/

ERC721Enumerable.sol

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 28

https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1418
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1445
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/token/ERC721/ERC721Burnable.sol#L7

Notes:

● Note:​ Consider adding a natspec comment for the contract

itself.

token/ERC721/

ERC721Metadata.sol

Notes:

● Note:​ ​tokenURI ​ should be ​external ​ rather than ​public ​.

Update: resolved in​ ​#1444

● Note:​ ​_name ​ and ​_symbol ​ should be ​private ​.

Update: resolved in​ ​#1426

token/ERC721/

ERC721Mintable.sol

Notes:

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 29

https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1418
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1444
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1418
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1426

● Note:​ ​ERC721Mintable.sol#L47​ - ​mintWithTokenURI() ​ is

missing a NatSpec comment.

Update: resolved in​ ​#1365

utils/

1. Consider changing the name of isContract()

Address.sol#L16​ - Because this function returns false when called

from a contract’s constructor, consider calling this function

isInitializedContract() ​ for clarity.

General

Notes:

● Note:​ There are a number of times throughout the code base

where a variable is assigned a default value. We recommend

removing the right-hand operand for each of these instances

that will reduce the gas cost.

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 30

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/token/ERC721/ERC721Mintable.sol#L47
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1418
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1365
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/utils/Address.sol#L16

○ drafts/ERC1046/TokenMetadata.sol#L18​:
_tokenURI ​ (8,170 gas)

○ payment/SplitPayment.sol#L14-15​: ​_totalShares
and ​_totalReleased ​ (10,560 gas)

○ token/ERC20/ERC20Mintable.sol#L14​:
_mintingFinished ​ (6,911 gas)

Update: resolved in​ ​#1432​ and​ ​#1451

● Note: ​We recommend mirroring the testing directory with the

contracts directory. This is already followed for the most part,

but there are some notable exceptions after the

reorganization of the contracts directory. The following are

some adjustments that should be made to achieve this:

○ Move ​TokenVesting.test.js ​ into
test/drafts/

○ Move ​Math.test.js ​ into ​test/math/

○ Tests are in the wrong folder for ​ECDSA ​. They’re still
in the ​library/ ​ folder.

Update: resolved in​ ​#1428

● Style:​ It would be good to consistently use decimal or hex

numbers in assembly. Switching for different contracts using

assembly will confuse users. See ​ECDSA.sol ​ vs.

ERC165Checker.sol ​.

Update: resolved in​ ​#1429

● Note: ​The escrow contracts can be separated out into their

own folder to help them stand out as first-class contracts in

the library. Also, consider adding the following comments to

the escrow contracts to clarify their usage. See this Gist for

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 31

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/drafts/ERC1046/TokenMetadata.sol#L18
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/payment/SplitPayment.sol#L14-L15
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/dac5bccf803696d9d98d269b8c27c7aac5fa1c5c/contracts/token/ERC20/ERC20Mintable.sol#L14
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1418
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1432
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1418
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1451
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1418
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1428
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1418
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1429

specific recomendations:

https://gist.github.com/cwhinfrey/8d995081483906796d634d

0373a16c15​.

Update: resolved in​ ​#1430

No Issues

The following contracts were reviewed but no issues

were found:

● crowdsale/validation/IndividuallyCappedCrowdsale.sol

● crowdsale/validation/CappedCrowdsale.sol

● crowdsale/emission/MintedCrowdsale.sol

● cryptography/

● drafts/ERC20Migrator.sol

● drafts/ERC1046/TokenMetadata.sol

● token/ERC20Detailed.sol

● token/ERC20/ERC20Mintable.sol

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 32

https://gist.github.com/cwhinfrey/8d995081483906796d634d0373a16c15
https://gist.github.com/cwhinfrey/8d995081483906796d634d0373a16c15
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1418
https://github.com/OpenZeppelin/openzeppelin-solidity/pull/1430

● token/ERC20/ERC20Pausable.sol

● token/ERC20/IERC20.sol

● token/ERC20/TokenTimelock.sol

● token/ERC721/ERC721Full.sol

● token/ERC721/ERC721Holder.sol

● token/ERC721/ERC721Pausable.sol

● token/ERC721/IERC721.sol

● token/ERC721/IERC721Enumerable.sol

● token/ERC721/IERC721Full.sol

● token/ERC721/IERC721Metadata.sol

● token/ERC721/IERC721Receiver.sol

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 33

Conclusion

One issue of critical severity was found and relayed to the Zeppelin team
immediately. A solution was discussed and implemented as quickly as
possible. Only two high severity issues were found and explained, along
with recommendations on how to fix them. Most of the issues above are
there in order to mitigate the likelihood of an attack by a malicious actor
so that developers can focus on writing application-specific code and not
have to worry about the implementation of these contracts.

It has been a wonderful experience working with the Zeppelin team and
we look forward to seeing the many scenarios in which these contracts
are used!

Note that the above audit reflects the Level K analysis of the OpenZeppelin contracts based

on currently known security patterns in Solidity and the EVM. We have not reviewed any

other Zeppelin or OpenZeppelin products. The above is not investment advice and we do

not endorse any token sale related to or created by this code. We do not guarantee that this

code is unexploitable and assume no liability for any funds lost in these contracts.

Open Zeppelin v2.0 Audit Level K, Inc. October 21st, 2018 34

